convex domination subdivision number of a graph
Authors
abstract
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belong to $x$ for any twovertices $a,bin x$. a set $x$ is a convex dominating set if it isconvex and dominating set. the {em convex domination number}$gamma_{rm con}(g)$ of a graph $g$ equals the minimumcardinality of a convex dominating set in $g$. {em the convexdomination subdivision number} sd$_{gamma_{rm con}}(g)$ is theminimum number of edges that must be subdivided (each edge in $g$can be subdivided at most once) in order to increase the convexdomination number. in this paper we initiate the study of convexdomination subdivision number and we establish upper bounds forit.
similar resources
The convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
full textthe convex domination subdivision number of a graph
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
full textroman game domination subdivision number of a graph
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
full textRainbow game domination subdivision number of a graph
The rainbow game domination subdivision number of a graph G is defined by the following game. Two players D and A, D playing first, alternately mark or subdivide an edge of G which is not yet marked nor subdivided. The game ends when all the edges of G are marked or subdivided and results in a new graph G′. The purpose of D is to minimize the 2-rainbow dominating number γr2(G ′) of G′ while A t...
full textRoman Game Domination Subdivision Number of a Graph
A Roman dominating function on a graph G = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ∑ v∈V f(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on ...
full textInfluence of edge subdivision on the convex domination number
We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
full textMy Resources
Save resource for easier access later
Journal title:
communication in combinatorics and optimizationجلد ۱، شماره ۱، صفحات ۴۳-۵۶
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023